Navitas Semiconductor
“Electrify Our World™”

Pure-Play
Next-Generation
Power Semiconductors

March 7th, 2023
The Fossil Fuel Challenge

Energy Supply

Renewables

2020

Fossil Fuels
80%

Low Efficiency

Direct Use

Energy Consumption

Electrical

Combustion
80%

Only 20% Electrified
The Electrified World

Energy Supply

2020
- Fossil Fuels: 80%
- Renewables

2050
- Fossil Fuels
- Renewables: 80%

Energy Consumption

- Electrical: 80%
- Combustion: 80%

2020
- Low Efficiency
- Direct Use

2050
- High Efficiency
- Direct Use

Target: 80%
August 15th, 2022: Navitas Semiconductor, industry-leader in gallium nitride power ICs, acquired GeneSiC Semiconductor, silicon carbide pioneer and industry leader.
The Only Pure-Play, Next-Gen Power Semi Player

- Faster Switching
- Smaller & Lighter
- Higher Power Density
- Faster Charging
- Lower System Cost

Note: Navitas estimate of GaN- & SiC-based power systems compared to silicon in the 2024-2025 timeframe.

© Navitas Semiconductor 2023
$22B ‘Pure-Play’ Market Opportunity (1)

1) 2026E potential, Source: Yole, DNV, IRENA, Fraunhofer ISE, IHS, Cisco, Hyperscale, Peer annual reports, Wall Street research.

© Navitas Semiconductor 2023
The Second Revolution in Power

- 1977: Linear Regulators
- 1987: Switching Regulators
- 2014: 65 kHz
- 2018: 1 MHz

Power Density (W/in³)

- Si Bipolar & Si FETs
- New Magnetics
- New Controllers
- New Topologies

- 2x Lower Loss
- 3x Lower $/W

- 50 Hz, 30 kHz, 65 kHz, 1 MHz

- 1977: 40% efficiency
- 1987: 80% efficiency

- 5x Increase in 10 years
- <10%/yr improvement in over 30 years

- 2014: Founded
- 2018: MP
- 2028: GaN Fast Power IC

New GaN Power ICs
- New Magnetics
- New Controllers
- New Topologies

© Navitas Semiconductor 2023
Accelerating Growth

Headcount, Valuation & Revenues

World's 1st GaN Power IC Prototype
World's 1st GaN Half-Bridge Prototype
World's Smallest 25W USB-A
World's Smallest 25W USB-A
World's Smallest 150W
World's Smallest 27W USB-PD
World's Smallest 65W USB-PD
World's Smallest 65W USB-PD
World's Smallest 65W
World's Smallest 65W
World's Smallest 300W
World's Smallest 300W
World's Smallest 150W
World's Smallest 65W USB-PD
World's Smallest 27W USB-PD
World's Smallest 65W USB-PD
World's Smallest 65W USB-PD
World's Thinnest 45W USB-PD
World's Thinnest 45W USB-PD
Mass Production
Mass Production
30+ Patents
30+ Patents
3.2kW Data Center Prototype
3.2kW Data Center Prototype
120+ Patents
120+ Patents
3kW EV Prototype
3kW EV Prototype
100+ Patents
100+ Patents
Fast Charger Design Center
Fast Charger Design Center
Innovation Award Honoree
Innovation Award Honoree
20M Shipped
20M Shipped
IPO: NVTS
IPO: NVTS
70M Shipped
70M Shipped
GaNSense Control
GaNSense Control
World's 1st GaNSense Half-Bridge
World's 1st GaNSense Half-Bridge

© Navitas Semiconductor 2023
The GaN Revolution: Ultimate Integration

GaNFast™

- 200-300 kHz
- • Old, slow
 • High Qg
 • High COSS
 • FSW < 100 kHz

GaNSense™

- 500 kHz
- • External gate drive
 • dV/dt sensitivity
 • Layout sensitivity
 • ESD sensitivity
 • Unknown reliability
 • Unknown robustness

- ✓ Internal Gate
 ✓ Integrated Gate Drive
 ✓ dV/dt Immunity
 ✓ Layout Insensitive
 ✓ 2 kV ESD rating
 ✓ Proven Reliability
 ✓ Proven Robustness

GaNFast plus:

- ✓ Autonomous Standby
 ✓ Autonomous Protection
 ✓ Loss-less Current Sensing
 ✓ High Precision
 ✓ High Efficiency

GaNSense Half-Bridge

- 1 MHz
- 800 Vmax
- 24V ESD

- Autonomous Standby Mode
- Over-Temperature Protection
- Loss-Less Current Sensing
- Enlarged cooling pads

- ✓ Highest integration
- ✓ integrated HS and LS FETs
- ✓ Integrated level-shift isolation
- ✓ integrated boot-strap
- ✓ Shoot-through protection
- ✓ Fastest switching
- ✓ Highest efficiency

© Navitas Semiconductor 2023
Navitas GaN IC: Smaller, Faster, Robust

Discrete dMode GaN
- dMode GaN Discrete (3.7mm²)
- **Silicon FET** (3.8mm²)

Discrete eMode GaN
- eMode GaN Discrete (4.5mm²)

Navitas eMode GaN IC
- Integrates drive circuit & more
- Monolithic GaN IC (1.4mm²)
- No extra circuits
- No parasitics & delay
- Drive & power matched in GaN
- Integrated features, functions
- Highest speed & efficiency
- Highest robustness and reliability
- Simple customer design
- 50-80% smaller chip

(1) 'dMode' = depletion mode = 'normally on' transistor, causes short circuit unless additional transistor added.
(2) 'eMode' = enhancement mode = 'normally off' transistor.
Foundational Reliability

• **Design** for Reliability
 • Integrated drive, sensing and protection
 • Component reliability, and **system** reliability

• **Testing** for Reliability:
 • Proprietary production test methods
 • GaN ICs tested 400% (multi-temp, high-frequency)

• **Characterization** for Reliability
 • Exhaustive, proactive, and unique Navitas reliability program
 • 5.8 B equivalent device hours tested\(^{(1)}\)
 • Proprietary, highly-accelerated Op-Life, plus JEDEC, plus ELFR monitoring
 • Founder member of JEDEC JC70.1

\(^{(1)}\) As of September 2022
© Navitas Semiconductor 2023
GaNFast Power ICs

<table>
<thead>
<tr>
<th>Family</th>
<th>Part #</th>
<th>Type</th>
<th>$V_{DS(\text{CONT})}$ (V)</th>
<th>$V_{DS(\text{TRAN})}$ (V)</th>
<th>$R_{DS(\text{ON})}$ (mΩ, typ)</th>
<th>Package (PQFN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NV6113</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>300</td>
<td>5x6</td>
</tr>
<tr>
<td></td>
<td>NV6115</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>450</td>
<td>5x6</td>
</tr>
<tr>
<td></td>
<td>NV6117</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>170</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6123</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>120</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6125</td>
<td>Single</td>
<td>300</td>
<td>450</td>
<td>260</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6127</td>
<td>Single</td>
<td>175</td>
<td>260</td>
<td>125</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6128</td>
<td>Single</td>
<td>125</td>
<td>170</td>
<td>70</td>
<td>5x6</td>
</tr>
<tr>
<td></td>
<td>NV6152</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>450</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6153</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>330</td>
<td>5x6</td>
</tr>
<tr>
<td></td>
<td>NV6154</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>260</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6156</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>170</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6158</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>120</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6132x</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>450</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6133x</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>330</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6134x</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>260</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6136x</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>170</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6138x</td>
<td>Single</td>
<td>700</td>
<td>800</td>
<td>120</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6169</td>
<td>Single</td>
<td>650</td>
<td>800</td>
<td>45</td>
<td>8x8</td>
</tr>
<tr>
<td></td>
<td>NV6247</td>
<td>Half-Bridge</td>
<td>650</td>
<td>800</td>
<td>160/160</td>
<td>6x8</td>
</tr>
<tr>
<td></td>
<td>NV6245C</td>
<td>Half-Bridge</td>
<td>650</td>
<td>800</td>
<td>275/275</td>
<td>6x8</td>
</tr>
</tbody>
</table>

Datasheets, electrical (SPICE) and mechanical (.stp) models available at: https://navitassemi.com/download/
GaNSense Control

- Integrated LV Si controller + HV GaNSense power IC
 - Smaller, cooler, lighter fast chargers
- Previously JV with Halo Micro\(^{(1)}\)
- Foundation for low-voltage, high-speed Si controller capability
 - Wide range of applications and markets
 - Smartphone chargers to data centers, home appliance / industrial, solar etc.
 - Adds $1B+/year to market opportunity
 - Immediate revenue
- Full market launch in March ‘23
 - Asia Charger Expo (Shenzhen, CN)
 - APEC conference (Orlando, US)

\(^{(1)}\) Completed February 2023
GaN Integration Drives Speed, Efficiency, Stability

Discrete GaN Half-Bridge
- 33 components
- 250 mm² footprint
- External HB driver HVIC
- External HV bootstrap
- 2x HV bypass diodes
- 2x external gate drives
- Exposed gates

61% fewer components

GaNSense Half-Bridge IC
- 13 components
- 90 mm² footprint
- Level shifters
- Bootstrap
- Gate drivers
- No exposed gates

64% smaller footprint

Complete integration

Severe Ringing & Glitching!

No Ringing, No Glitching!
True GaN Integration Drives Speed, Size

GaN MCM 45W

65 kHz
Bobbin Transformer (23 mm thick)
Electrolytic Capacitors
52 x 53.1 x 30.1 mm = 83 cc Case + pins
0.5 W/cc

6x Faster
3x Smaller

400 kHz
Planar Transformer (8 mm thin)
No Electrolytic Caps
82.2 x 39.0 x 10.5 mm = 34 cc Case
1.5 W/cc

(1) Samsung 45W charger (GaN MCM) vs. OPPO 50W SuperVOOC Cookie (Navitas GaN IC)
© Navitas Semiconductor 2023
Typically, slow-speed designs have ~70% of volume used by transformer, capacitors, EMI filter, etc.

High-speed GaN IC designs **shrink** ‘passive’ components by ~50%\(^{(1)}\)

Half-Bridge IC delivers ~2x the power, or ~2x faster charging in the **same size**\(^{(1)}\)

~65 kHz Silicon
65 W 43 cc

~75 kHz GaN Discrete / MCM
65 W, 46 cc

~400 kHz GaN IC
65 W, 31 cc

~750 kHz peak Half-Bridge GaN IC
120 W, 44 cc

~2x faster charging!
100% Tier 1 Mobile OEMs Adopting Navitas

Tier 1 OEMs

<table>
<thead>
<tr>
<th>Company</th>
<th>GaN Chargers Mass Production<sup>(1)</sup></th>
<th>GaN Chargers In Development<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMSUNG</td>
<td></td>
<td>240+</td>
</tr>
<tr>
<td>moto X30 Pro</td>
<td></td>
<td>250+</td>
</tr>
<tr>
<td>LG Electronics</td>
<td></td>
<td>100% Mobile OEMs Designing With Navitas GaN ICs</td>
</tr>
<tr>
<td>Let’s go GaNFast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oppo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenovo LEGION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell</td>
<td></td>
<td>70M+ GaN ICs Shipped<sup>(2)</sup></td>
</tr>
<tr>
<td>Let’s go GaNFast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redmi Note 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>World’s Fastest Charging Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiaomi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>realme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let’s go GaNFast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aftermarket Examples

- World’s first 30W GaN Fast Charger for iPhone 12
- The Ultimate Charging Experience with Navitas GaN ICs

⁽¹⁾ as of Q4'22 report
⁽²⁾ GaN ICs Shipped

© Navitas Semiconductor 2023
Now Ultra-Fast Chargers

- Major trend
- New, fast-growth market: $1B opportunity by 2025\(^{(1)}\)
- Full charge in <10 mins (200W)
- Increased GaN$ per charger
- World’s highest power density 120W, 150W, 200W, 240W

\(^{(1)}\) Navitas estimate

RedMi (Xiaomi) F1 Mercedes 120W
Realme (OPPO) GT Neo 3 150W
iQOO (vivo) 10 Pro, 200W
Powering the World’s Fastest-Charging Smartphone

The charging dock shown in the video is a special 240W superfast charging dock, which charges the smartphone in the original position and more positions for ease.
GaNFast Exceeds “Titanium”, >2x Power Density

- Euro ‘Titanium plus’ standard from January 1st, 2023(1)
- Design Center: 4 platforms, 10 customer projects (1.3 kW, 1.6 kW, 2.7 kW, 3.2 kW CRPS(2))
- GaN can reduce electricity use by up to 10%, save >15 TWh or $1.9B/yr (3)

\begin{itemize}
 \item \textbf{Slow Silicon AC-DC 3,200W}
 \begin{itemize}
 \item 47 kHz
 \item 325 x 107 x 41 mm
 \item 2.2 W/cc
 \end{itemize}
 \textbf{GaNFast AC-DC 2,700W}
 \begin{itemize}
 \item >2x higher power density
 \item >30% reduction in energy loss
 \item 300-500 kHz
 \item 185 x 73.5 x 39 mm
 \item 5.1 W/cc
 \end{itemize}
\end{itemize}

\textbf{“GaN is a breakthrough new technology that is enabling dramatic reductions in size, energy savings and power density”}
\textbf{“Navitas is an excellent partner with industry-leading GaN ICs”}

Robin Cheng, VP R&D

(1) European Union ‘Directive 2009/125/EC, 2019 Annex’, power supplies must be >96% efficiency peak.
(2) CRPS = Common Redundant Power Supply standard, defined by Intel for standardized mechanical form-factors, targets hyper-converged compute, storage and networking eqpt.
(3) Navitas est. based on a) Navitas server/datacom forecast & AAAS data, b) $0.12/kWhr, c) Si vs. GaN $/W and d) data-center loading profile. Estimated based on known existing Si-based solutions to deliver 500A next-generation data processors to Navitas targets for new GaN-based AC/DC and DC/DC for these same next-generation data processors.
Largest range of SiC FETs & diodes (650 V to 6.5 kV)

Fast Switching
Highest efficiency hard-switch, soft-switch (Lowest E_{ON}, E_{OFF}, E_{DS} losses)

Cool Operation
Lowest R_{DS(on)} at high temperature (25% lower than industry typical)

100%-Tested Robust Avalanche
Highest published capability to handle excess energy in fault condition

Long Short-Circuit Withstand Time
World-class survival duration in fault condition

High-Power Paralleling
Matching currents (Stable V_{th})

Based on Navitas testing of 1200V SiC MOSFETs vs. competitor products
© Navitas Semiconductor 2023
Broadest SiC FET Portfolio

650–6,500V Trench-Assisted Planar SiC FETs

- 50+ SiC MOSFETs, array of standard packages
- Only supplier with 650V to 6,500V SiC MOSFETs

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>1000 mΩ</th>
<th>500 mΩ</th>
<th>100 mΩ</th>
<th>50 mΩ</th>
<th>10 mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>650V</td>
<td>1000 mΩ</td>
<td>450 mΩ</td>
<td>160 mΩ</td>
<td>45 mΩ</td>
<td>12 mΩ</td>
</tr>
<tr>
<td>750V</td>
<td>1000 mΩ</td>
<td>300 mΩ</td>
<td>160 mΩ</td>
<td>40 mΩ</td>
<td>12 mΩ</td>
</tr>
<tr>
<td>1200V</td>
<td>1000 mΩ</td>
<td></td>
<td>120 mΩ</td>
<td>30 mΩ</td>
<td>10 mΩ</td>
</tr>
<tr>
<td>1700V</td>
<td></td>
<td>359 mΩ</td>
<td>160 mΩ</td>
<td>20 mΩ</td>
<td></td>
</tr>
<tr>
<td>3300V</td>
<td></td>
<td></td>
<td>120 mΩ</td>
<td>10 mΩ</td>
<td></td>
</tr>
<tr>
<td>6500V</td>
<td></td>
<td></td>
<td></td>
<td>15 mΩ</td>
<td></td>
</tr>
</tbody>
</table>

Most 1,700V SiC FETs

- Broadest industry offering for 1700V SiC MOSFETs

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>1000 mΩ</th>
<th>500 mΩ</th>
<th>100 mΩ</th>
<th>50 mΩ</th>
<th>10 mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 mΩ</td>
<td></td>
<td>450 mΩ</td>
<td>160 mΩ</td>
<td>45 mΩ</td>
<td>12 mΩ</td>
</tr>
<tr>
<td>750 mΩ</td>
<td></td>
<td></td>
<td>160 mΩ</td>
<td>40 mΩ</td>
<td>12 mΩ</td>
</tr>
<tr>
<td>1200 mΩ</td>
<td></td>
<td></td>
<td>120 mΩ</td>
<td>30 mΩ</td>
<td>10 mΩ</td>
</tr>
<tr>
<td>1700 mΩ</td>
<td></td>
<td>750 mΩ</td>
<td>160 mΩ</td>
<td>20 mΩ</td>
<td></td>
</tr>
<tr>
<td>3300 mΩ</td>
<td></td>
<td></td>
<td>750 mΩ</td>
<td>10 mΩ</td>
<td></td>
</tr>
</tbody>
</table>

1) based on GeneSiC voltage range of production released SiC MOSFETs compared to all publicly identified voltage ranges of other SiC suppliers.
Best High-Speed, High-Temp Performance

Supplier	**Resistance**	**Energy Loss**	**Figure-of-Merit (Low number is better)**
	$R_{DS(ON)}$ @ 25°C (mΩ)	$R_{DS(ON)}$ @ 175°C (mΩ)	E_{ON} @ 25A (µJ)
GeneSiC	40	57	600
#2	40	68	600
#3	40	80	850
#4	40	71	550
#5	45	85	520

Reference 1200V SiC FET, 40-45mΩ devices; GeneSiC = Trench-Assisted Planar G3R40MT12J; based on Navitas test result & competitive data sheet parameters.

Lowest power loss at high temp, high speed = **Highest Efficiency, Energy Savings**

Small Size, Light Weight, Low System Costs!
Faster, Cooler, Longer Lifetime

- GeneSiC trench-assisted planar FET vs. Competitor SiC FET
 - 1,200 V, 40 mΩ, D2pak in half-bridge
 - Represents 7.5 kW DC-DC converter (e.g. data center, EV)
 - 150 kHz switching = ~10x faster than Si IGBT example

- GeneSiC: >80% energy savings (>3,000 kWh/yr) vs Si IGBTs
 -25°C cooler = 3x longer life vs other SiC (reduced maintenance / repair costs)
High Quality, High Reliability

100%-Tested Avalanche

Highest published capability to handle excess energy in fault condition

- Critical in applications like motor drives to withstand unclamped inductive load (UIL) energy dump in situations like motor open-circuit (O.C.)

High Power Paralleling

Matching currents (Stable Vth)

- Competitor products allow threshold voltage to drop under high voltage, creating risk of turn-on error

- GeneSiC packaged and bare-die FETs can be paralleled reliably for high-power applications

Long Short-Circuit Withstand Time

World-class survival duration in fault condition

- Critical to prevent failures like motor short circuit where the FET faces full voltage (Vdd) in ON-state.

2) 1,200 V, 20 mΩ FET
GaN + SiC for Solar & Energy Storage

Market Potential *(2)*
- Residential Micro >$1.4B (GaN)
- Residential String >$1.0B (SiC)
- Commercial String >$1.0B (SiC)
- Energy Storage >$1.25B (SiC) *(50% attach rate)*

Total = >$4.65B

Navitas Strength & Opportunities
- Solar up 3x 2022-2027, more capacity than natural gas by 2026, coal by 2027
- Inflation Reduction Act: >$50B to solar, storage and wind
- Bus voltages rising to 1,500V – matches GeneSiC 3,300V capability
- Immediate SiC revenue, GaN revenue from 2024

*(1) Navitas est. 6.2 kW residential installation with silicon inverter at 97.5%, GaN at 98.5% efficiency.
(2) Market estimates for 2030, based on DNV and Navitas analysis*
Pure-Play EV: The Largest Opportunity

>$11B/year Opportunity\(^{(1)}\)

(On-board >$10B/yr + Roadside >$1B/yr)

Navitas EV System Design Center

- 5 platforms, for 10 customer projects, including:
 - 400V, 800V and 6.6-22 kW, bi-di charger (2-in-1), bi-di + DC-DC (3-in-1)
 - Increasing bus voltages play to Navitas 3,300 V strength

Navitas + Geely Joint EV Design Center

Customers in Production, Development

Navitas + Geely Joint EV Design Center

- AMG
- BYD
- INOVANCE
- EVTECH
- SHINRY
- GEELY
- LG
- MAGNA
- JAGUAR
- LAND-ROVER
- BRUSA

“10-80% charge in only 18 minutes!”\(^{(2)}\)

\(^{(1)}\) Estimate 2030, 30M EV/yr, based on DNV and Navitas analysis. Note: Assumes 150 kW traction inverter, 100 kWh battery, $100/kWh battery cost and typical 230 mile range.

\(^{(2)}\) Level 3 800V 350 kW DC charger 10-80% in 18 minutes for Genesis GV70 SUV
Home Appliance & Industrial

Legacy Si-Based Brush-less DC (BLDC) Motor & Inverter for Washing Machine (~80% efficiency)

Navitas 300W 3-phase Platform for Inverter-Motor Integration

- 2x higher frequency
- >60% fewer components, PCB area
- 95-97% efficiency
- 80% energy savings vs Silicon BLDC
- 90% energy savings vs AC motors
- High reliability
- Fast time to market

>$/1.5B/year Opportunity for 50-300W Motors

45 new motor-drive customer projects in development (GaN+SiC)

Inflation Reduction Act: $9B to upgrade US home appliance efficiencies

(1) Navitas estimate 50-300W motors, including circulators, hydronic pumps, aircon IDU/ODU fans, HVAC, air purifiers, hair dryers, refrigerator compressors, dishwashers, washing machines.
High Capacity, 50% Shorter Lead-times

- Tier-1 foundry partners, excellent manufacturing support
- High yields, low costs, flexible supply chains
- Long-term capacity agreements: GaN up 3x, SiC up 5x starting in 2023
- 50% shorter lead-times than industry typical

1) Industry lead-times per Jefferies Equity Research, August ‘22
High Volume, High Quality

Over 70,000,000 shipped,\(^{(1)}\)
Over 9,000,000 shipped,\(^{(1)}\)

(1) Shipments as of March 2023.
© Navitas Semiconductor 2023
Leader in Sustainability

Every GaNFast™ IC saves 4 kg CO₂

- 4x-10x lower component CO₂ footprint than silicon
- 28% lower lifetime CO₂ footprint for chargers / adapters
- Accelerates transition from ICE to EV by 3 years, saving 20%/yr of road-sector emissions by 2050
- GaN + SiC save up to 6 Gton / year by 2050

February ’22 First GaN sustainability report based on global standards.

May ’22 World’s first semiconductor company CarbonNeutral® certified

August ’22 First 100,000 tons CO₂ saved

October ’22 Recognized for industry-leading sustainability reporting

(1) Navitas estimates based on Earth-Shift Global, DNV life-cycle analysis, market growth. See 2021 Sustainability Report for more details
Mission: Electrify Our World™

Energy sources and uses are being electrified...

...creating a $40B GaN + SiC opportunity by 2050

Fossil-fuel vs renewable ratios adapted from IRENA 2020 “Global Renewables Outlook”. Shift required to meet “Transforming Energy Scenario, 9.5 Gton target in 2050”, per Paris Agreement’s 1.5°C rise.

Market opportunity $ from Yole Développement, 2020 and Navitas analysis.

© Navitas Semiconductor 2023
Navitas Fundamentals

- Industry’s only pure-play next-gen power semi company, $23B/yr market
 - Founded 2014, 220+ employees
 - Nasdaq: NVTS (IPO October 2021)
- Leading power GaN IC and power SiC technology, 185+ patents
 - >70M GaN, >9M SiC Shipped
 - 3x (GaN), 5x (SiC) capacity expansion starting in 2023
 - Major diversification in markets, regions
- Mission to Electrify Our World™
 - Industry leader in mobile fast, ultra-fast chargers
 - Market expansion on track / accelerated into data center, solar, EV

(1) See Navitas New York Investor Meeting September 13th, 2022, and Navitas’ Q3’22 earnings November 9th, 2022, for details
© Navitas Semiconductor 2023
Revenue Growth, Diversification & Expansion

Quarterly Revenue (1)

Diversification (1)

Market Mix 2021

Market Mix 2022

Appliance / Industrial, 30%

Mobile / Consumer, 40%

Solar / Storage, 12%

EV, 5%

Other, 13%

Region Mix 2022

US, 24%

Europe, 32%

Asia, 44%

(1) Reflects results as of Q4’22 earnings report, February 23rd 2023 (not updated).
FORWARD-LOOKING STATEMENTS

This presentation includes forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended (15 U.S.C. § 78u-5). Forward-looking statements may be identified by the use of words such as “we expect” or “are expected to be,” “estimate,” “plan,” “project,” “forecast,” “intend,” “anticipate,” “believe,” “seek,” or other similar expressions that predict future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding estimates and forecasts of other financial and performance metrics and projections of market opportunity and market share. These statements are based on various assumptions, whether or not identified in this presentation. These statements are also based on current expectations of the management of Navitas and are not predictions of actual performance. Such forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by any investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions and expectations. Many actual events and circumstances that affect performance are beyond the control of Navitas. In addition, forward-looking statements are subject to a number of risks and uncertainties, including the possibility that expected growth of Navitas’ and GeneSiC’s businesses will not be realized, or will not be realized within expected time periods, due to, among other things, the failure to successfully integrate GeneSiC into Navitas’ business and operational systems; the effect of the acquisition on customer and supplier relationships or the failure to retain and expand those relationships; changes in global supply for competing or alternative solutions, including such supply by competitors that reduce demand for our products or force us to reduce prices and product profitability more than we planned; or the success or failure of other business development efforts; Navitas’ financial condition and results of operations; Navitas’ ability to accurately predict future revenues for the purpose of appropriately budgeting and adjusting Navitas’ expenses; Navitas’ ability to diversify its customer base and develop relationships in new markets; Navitas’ ability to scale its technology into new markets and applications; the effects of competition on Navitas’ business, including actions of competitors with an established presence and resources in markets we hope to penetrate, including silicon, gallium nitride and silicon carbide markets; the level of demand in Navitas’ and GeneSiC’s customers’ end markets, both generally and with respect to successive generations of products or technology; Navitas’ ability to attract, train and retain key qualified personnel; changes in government trade policies, including the imposition of tariffs; and the impact of the COVID-19 pandemic on the global economy, including but not limited to Navitas’ supply chain and the supply chains of customers and suppliers; regulatory developments in the United States and foreign countries; and Navitas’ ability to protect its intellectual property rights. These and other risk factors are discussed in the Risk Factors section of our annual report on Form 10-K for the year ended December 31, 2021, which we filed with the Securities and Exchange Commission (the “SEC”) on March 31, 2022 and as thereafter amended, and in other filings we make with the SEC, including the Risk Factors section of our quarterly report on Form 10-Q for the second quarter ended June 30, 2022, filed with the SEC on August 15, 2022. If any of these risks materialize or our assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. There may be additional risks that Navitas is not aware of or that Navitas currently believes are immaterial that could also cause actual results to differ materially from those contained in the forward-looking statements. In addition, forward-looking statements reflect Navitas’ expectations, plans or forecasts of future events and views as of the date of this presentation. INFORMATION IS AS OF THE DATE SPECIFIED ONLY. WE UNDERTAKE NO OBLIGATION TO UPDATE

Forward-looking statements reflect Navitas’ expectations, plans or forecasts of future events and views as of the date of this presentation. Navitas anticipates that subsequent events and developments will cause Navitas’ assessments to change. However, while Navitas may elect to update our forward-looking statements at some point in the future, Navitas specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing Navitas’ assessments as of any date subsequent to the date of this presentation. Accordingly, undue reliance should not be placed upon our forward-looking statements. Neither Navitas nor any of its affiliates have any obligation to update this presentation.

USE OF PROJECTIONS

This presentation contains projected financial information with respect to Navitas. Such projected financial information constitutes forward looking information, is for illustrative purposes only and should not be relied upon as necessarily being indicative of future results. The assumptions and estimates underlying such projected financial information are inherently uncertain and are subject to a wide variety of significant business, economic, competitive and other risks and uncertainties that could cause actual results to differ materially from those contained in the projected financial information. See the cautions included in the “Forward-Looking Statements” paragraph above. Actual results may differ materially from the results contemplated by the projected financial information contained in this presentation, and the inclusion of such information in this presentation should not be regarded as a representation by any person that the results reflected in such information will be achieved. Navitas’ independent registered public accounting firm has not audited, reviewed, compiled or performed any procedures with respect to such projections for the purpose of their inclusion in this presentation, and accordingly has not expressed an opinion or provided any other form of assurance with respect thereto for the purpose of this presentation.

IMPORTANT INFORMATION AND WHERE TO FIND IT

Navitas files quarterly, annual and periodic reports as well as other information with the U.S. Securities and Exchange Commission ("SEC"), which are available at Navitas’ Investor Relations website at https://ir.navitassemi.com/ or at the SEC’s website at https://www.sec.gov. You can find a more detailed description of risks affecting Navitas and its business in the Risk Factors section of our annual report on Form 10-K, which we filed with the SEC on March 31, 2022 and as thereafter amended, and in other filings we make with the SEC, including the Risk Factors update in our quarterly report on Form 10-Q for the second quarter ended June 30, 2022, filed with the SEC on August 15, 2022.
Disclaimers

FINANCIAL INFORMATION; NON-GAAP FINANCIAL MEASURES

This presentation includes financial information and data which are unaudited and do not conform to Regulation S-X promulgated under the Securities Act of 1933, as amended. Accordingly, such information and data may not be included in, may be adjusted in or may be presented differently in, any proxy statement, prospectus, registration statement or other filing which has been filed or is to be filed by Navitas with the SEC. In addition, some of the financial information and data contained in this presentation, such as EBITDA, have not been prepared in accordance with United States generally accepted accounting principles (“GAAP”), which we refer to as “non-GAAP financial measures.” Navitas believes these non-GAAP financial measures provide useful information to management and investors regarding certain financial and business trends relating to Navitas’ financial condition and results of operations. Navitas believes that the use of these non-GAAP financial measures provides an additional tool for investors to use, together with GAAP measures that we also provide, in evaluating projected operating results and trends, and in comparing Navitas’ financial measures with other similar companies, many of which present similar non-GAAP financial measures to investors.

Management does not consider these non-GAAP financial measures in isolation or as an alternative to financial measures determined in accordance with GAAP. The principal limitation of these non-GAAP financial measures is that they exclude significant expenses and income that are required by GAAP to be recorded in Navitas’ financial statements. In addition, they are subject to inherent limitations as they reflect the exercise of judgments by management about which expenses and income are excluded or included in determining these non-GAAP financial measures. And, because non-GAAP financial measures are not standardized, it may not be possible to compare non-GAAP financial measures prepared by Navitas with non-GAAP financial measures prepared by other companies, even if the measures have similar names.

INDUSTRY AND MARKET DATA

This presentation relies on and refers to information and statistics regarding the sectors in which Navitas competes and other industry data. This information and statistics were obtained from third party sources, including reports by market research firms. Although Navitas believes these sources to be reliable, it has not independently verified the information and does not guarantee its accuracy and completeness. This information has been supplemented in certain cases with information from discussions with Navitas’ customers and internal estimates, taking into account publicly available information about other industry participants and Navitas’ management’s best view as to information that is not publicly available. This presentation contains preliminary information only, is subject to change at any time and is not, and should not be assumed to be, complete or to constitute all the information necessary to adequately make an informed decision regarding Navitas.

TRADEMARKS AND TRADE NAMES

Navitas owns or has rights to various trademarks, service marks and trade names that it uses in connection with the operation of Navitas’ business. This presentation also contains trademarks, service marks and trade names of third parties, which are the property of their respective owners. The use or display of third parties’ trademarks, service marks, trade names or products in this presentation is not intended to, and does not imply, a relationship with Navitas, or an endorsement or sponsorship by or of Navitas. Solely for convenience, the trademarks, service marks and trade names referred to in this presentation may appear with the ®, TM or SM symbols, but such references are not intended to indicate, in any way, that Navitas will not assert, to the fullest extent under applicable law, its rights or the rights of applicable licensors to these trademarks, service marks and trade names.